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Abstract

Introduction: Multiple positron emission tomography (PET) tracers are available for

amyloid imaging, posing a significant challenge to consensus interpretation and quan-

titative analysis. We accordingly developed and validated a deep learning model as a

harmonization strategy.

Method: A Residual Inception Encoder-Decoder Neural Network was developed to

harmonize imagesbetweenamyloidPET imagepairsmadewithPittsburghCompound-

B and florbetapir tracers. The model was trained using a dataset with 92 subjects with

10-fold cross validation and its generalizability was further examined using an inde-

pendent external dataset of 46 subjects.

Results: Significantly stronger between-tracer correlations (P < .001) were observed

after harmonization for both global amyloid burden indices and voxel-wise measure-

ments in the training cohort and the external testing cohort.

Discussion: We proposed and validated a novel encoder-decoder based deep model

to harmonize amyloid PET imaging data from different tracers. Further investigation is

ongoing to improve themodel and apply to additional tracers.

KEYWORDS
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1 BACKGROUND

Amyloid and tau are the defining pathologies of Alzheimer’s dis-

ease (AD) and their abnormality initiates long before clinical symp-

tom onset.1 While postmortem neuropathological assessments are
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the gold standard for determining the existence and severity of these

pathologies,2,3 the development of radio-labelled tracers allows the

in vivo detection and quantification of amyloid and tau burdens using

positron emission tomography (PET).4,5 Since the development of

these PET tracers, they have been adopted in many research studies
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including the Alzheimer’s Disease Neuroimaging Initiative,6 the Domi-

nantly Inherited Alzheimer’s Network7 and others.8,9 It is determined

that amyloid plaques can be detected at least 15 years prior to AD

symptom onset10 and the prevalence of amyloid positivity increases

with age from approximately 10% at age 50% to 44% at age 90 in cog-

nitively normal populations.11 Imagingmeasurements of brain amyloid

and tau pathology help to define AD in its preclinical stage and allow

the investigation of the genesis and progression of AD.12 Many clinical

trials have been designed to include amyloid and tau PET imaging for

the assessment of treatment efficacy and target engagement as surro-

gate biomarkers.13–16 Human amyloid imaging started more than 15

years ago with the development of Pittsburgh Compound-B (PIB),17

and has since been widely adopted by many research groups.18,19

Because of its short half-life (20 min), the use of PIB is limited to

large research centers with access to onsite cyclotron and experi-

enced radiochemistry teams. A number of F18 labeled amyloid trac-

erswere later developed to address this limitation including florbetapir

(FBP),20 florbetaben (FBB),21 flutemetamol,22 and NAV4694,23 with

the first three subsequently receiving FDA approval for amyloid imag-

ing. With multiple PET tracers designed for the same target pathology,

each tracer has its own target binding affinity, tracer kinetic behavior,

non-specific binding, and tissue retention, hence the imaging data that

are acquired display tracer-dependent characteristics. Recent cross-

sectional comparison studies demonstrated that the global amyloid

burden measures derived from PIB and FBP have a shared variance

ranging from approximately 70% to 90% depending on the quantifi-

cation pipelines and cohorts.24–26 These tracers also show different

levels of variability in the amyloid burden measurements.24–26 Inter-

tracer variability leads to inconsistent amyloid positivity threshold and

poses challenges for multicenter studies. A mean cortical FBP stan-

dard uptake value ratio (SUVR) cutoff of 1.17was determined to detect

moderate to frequent brain amyloid burden based on pathological

assessment27 and this can be converted to a Centiloid (CL) cutoff of

37.1CLusing published equations24; a recent studybasedonPIB imag-

ing found a threshold of 20.1CL to beoptimal28; and a FBBbased study

determined a threshold of 19 CL.29 The CL approach30 was proposed

to define a common numerical scale hoping to unify the global amyloid

measures derived from different tracers and analysis pipelines. How-

ever, the amyloidmeasurements still have the same level of correlation

between tracers, and the inherent signal to noise property also remains

the same. Differences in amyloid measurements across tracers also

pose problems for longitudinal studies. The tracer difference results

in different capabilities of tracking longitudinal amyloid accumulation

which is especially important in clinical trials. In our recent study, we

estimated that the sample size needed to detect a 20% reduction in

the rate of amyloid accumulation was 305 per arm when PIB is used

as the amyloid tracer while a sample size of 2156 is needed for FBP.25

Furthermore, strategies enabling the detection of focused changes and

investigating the spatial patternsof pathological changeswhich require

regional and voxel-level details are currently lacking. One viable solu-

tionmaybe the emergingArtificial Intelligence technology: deep learn-

ing (DL).

Deep learning has been successfully implemented in computer

vision domains for decades. Only recently has it become a technique

RESEARCH-IN-CONTEXT

1. Systematic review: To quantify beta-amyloid deposition

in the brain, the use of multiple amyloid tracers with

varied characteristics poses a major challenge to inter-

pretation, to the ability to combine results from cross-

center studies, and to efforts to define a common positiv-

ity threshold.We propose a deep learning (DL)model as a

harmonization strategy to generate imputed amyloid PET

images of one amyloid tracer to the images of another.

2. Interpretation: We demonstrate that DL is an effective

approach for harmonizing PET imaging data obtained

from different tracers targeting the same underlying

pathophysiology.

3. Future directions: This technique can potentially allow

interchangeable use of amyloid tracers in research and

clinical applications without the need to develop tracer

specific interpretations of the images in PET imaging. The

approach has the potential to be extended to tau PET

imaging.

used inmedical imaging andAD research.31–33 DL, a subset ofMachine

Learning34 is an end-to-end framework for prediction and biomarker

discovery. Most recently, one DL approach is gaining traction to gen-

erate synthetic images of a missing modality based on input images

of a related but different modality.33,35 This approach was initially

developed to address the missing data problem33 and later adopted in

estimating the attenuation map from magnetic resonance (MR) imag-

ing data to allow accurate attenuation correction for PET/MR hybrid

scanners.35 We previously developed a new model termed Residual

Inception Encoder-Decoder Neural Network (RIED-Net)36 to render

enhanced images from Contrast-Enhanced Digital Mammography and

support breast cancer diagnosis. The success of RIED-Net motivated

this research to explore its applicability to harmonizing PET imaging

from different tracers, specifically, generating synthetic PIB images

from FBP data and evaluate its performance using two independent

datasets, one for training, validation, and testing, and one for external

validation.

2 METHODS

2.1 Participants

From the Open Access Series of Imaging Studies-3 dataset,37 92

participants aged 43 to 88 years were identified who had PIB and

FBP PET scans within 3 months (the acronym OASIS is used herein

for the selected dataset). This dataset was used for training and

cross-validation of the RIED-Net as a PET harmonization model. An

independent dataset24 of 46 participants aged 21 to 89 years with

paired PIB and FBP PET scans were downloaded from the Centiloid

Projectwebsite (http://www.gaain.org/centiloid-project) and servedas
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TABLE 1 Summary of demographic information of the two cohorts used in the study

OASIS (n= 92) GAAIN (n= 46) P-value

Age 68± 9 (43 to 88) 58± 21 (21 to 89) .000092

Sex(M/F) 44/48 27/19 .228

APOE4 (NC/HT/HM) 60/27/5 31/13/2 .95

MMSE 29.2± 1.0 (26 to 30) 25.8± 4.9 (8 to 30) 2.39E-09

Amyloid burden in Centiloid 14.0± 29.7 47.8± 54.1 .0002

(–12.8 to 146.3) (–9.2 to 151.9)

Abbreviations: OASIS, Open Access Series of Imaging Studies; GAAIN, Centiloid Project; MMSE,Mini-Mental State Exam.

the external testing set (herein referred to as GAAIN). Demographic

information of the two cohorts is summarized in Table 1 and the Sup-

plementary Material (in the Supporting Information). All studies were

approved by their corresponding institutional review boards and writ-

ten informed consent was obtained for each participant.

2.2 Imaging

For the OASIS dataset, dynamic PIB PET scan was acquired on a

Siemens Biograph 40 PET/CT or a Siemens/CTI EXACT HR+ scanner

for 60 minutes after tracer administration and reconstructed using

standard iterative methods with attenuation and scatter correction.

Dynamic FBP PET was acquired on a Siemens Biograph mMR scan-

ner for 70 minutes after FBP administration and reconstructed using

an OSEM algorithm and attenuation/scatter corrected using a sepa-

rately acquired low dose CT scan. For each participant, a T1-weighted

MR scan was also acquired using a 3T MR scanner. All imaging was

conducted at the Washington University in St. Louis, and individual

scans for each participant were completed within 3 months. The imag-

ing acquisition information for the GAAIN dataset has been previously

described in.24 Briefly, PIB PET was acquired between 50 and 70 min-

utes post-injection, and FBP PET was acquired 50 to 60 minutes. The

imaging pair was obtained on average of 18 days apart, and a 3T T1MR

image was obtained for each subject within 6 months of PET acquisi-

tion. One participant in the GAAIN cohort was excluded from further

analysis due to poor quality of the T1MR scan.

The T1-weighted MR data were analyzed using FreeSurfer (Marti-

nos Center for Biomedical Imaging, Charlestown,Massachusetts, USA)

to define anatomical regions. Amyloid PET imaging quantification was

then performed using our standard protocols that included scanner

harmonization, motion correction, target registration, and regional

value extraction38,39 using a PET unified pipeline. The output included

a SUVR image using cerebellar cortex as the reference region and a

mean cortical SUVR (MCSUVR) as the global index of brain amyloid

burden.38,39 For the OASIS cohort, the PIB PET data were summed

between 30 and 60 minutes and the FBP data were summed between

50 and 70 minutes post-injection to generate the SUVR images and

the MCSUVR global indices. For the GAAIN cohort, the PIB and

FBP PET data were summed between the 50 and 70 minutes and a

post-injection window of 50 to 60 minutes for the quantification. The

SUVR images were transformed in to the MNI152 template space

via affine transformation established based on the T1 MR image

and served as the input to the RIED-Net model for training, inter-

nal validation, and external validation. All MCSUVR measurements

were also converted to the CL scale using pre-established equations

and procedures25,40 to facilitate the cross-tracer comparison and

interpretation.

2.3 Deep learning model for PET harmonization

RIED-Netwas designed to estimate the voxel-wise non-linearmapping

between input (FBP) and output (PIB) images. In this mapping, letting

the FBP image be ∈ Rm × n, and the PIB image be O ∈ Rm × n, the rela-

tionship between the two can be defined as

O = S (I) ,

where S : Rm × n
→ Rm × n denotes the nonlinearmapping between the

FBP-PIB pair. The image synthesis problem is to make an estimation of

the function

S : arg minutes
S

|| S (I) − O|| .

Theoverall architecture of RIED-Net is shown in Figure 1. It consists

of nine residual blocks, where the encoding path consists of five blocks

and the decoding path of the remaining four blocks using an architec-

ture similar to U-Net41 and with the addition of a residual inception

shortcut path that has been shown to improve training efficiency.42

Each block has a conventional convolution/deconvolution path with

two 3 × 3 convolutional layers, and in parallel a 1 × 1 convolution path,

and the output matrices from these two parallel paths are summed

together and down/up sampled by a factor of 2 to serve as the input

to the next block. Additional technical details are provided in Supple-

mentaryMaterial.

We used 10-fold cross validation in the training. Specifically, for the

OASIS dataset, we shuffled the dataset randomly and created 10 dif-

ferent groups of the dataset; for an even split, we decided to use 90

out of 92 total samples (excluding the last twoparticipants according to

alphabetical order) and created10different foldsof size81:9 (total 90),

where 81were used for training and validation, and ninewere used for

testing. These folds are generated such that there is no overlap among

the training and testing samples and the test dataset in each fold is
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F IGURE 1 Overall architecture of RIED-Net. The RIED-Netmodel in this work adopted a U-Net-like architecture with the addition of a
residual inception short-cut pathwhich has been shown to improve the efficiency of model training. The overall model has five encoding blocks and
four decoding blocks. Each blue rectangle represents a datamatrix generated from the convolution operations (arrows) within the encoding
blocks, and the number below each rectangle indicates the number of channels within eachmatrix. The leftmost thin blue rectangle represents the
input data, a 2D slice from the florbetapir image (256× 256× 1matrix, i.e., one channel). Similarly, each green rectangle represents a datamatrix
generated from the convolution/deconvolution operations within the decoding blocks, and again the number below indicates the number of
channels within the correspondingmatrix. Notice as the input of each decoding layer, a blue rectangle from thematching encoding block is
appended by a green rectangle from the output of the previous block. Each brown arrow represents amulti-channel convolutional operationwith a
3× 3 kernel and a rectified linear unit (ReLu) as the activation function (Conv 3×3, ReLu). Each orange arrow denotes a 1×1 convolutional
operation with a ReLu as the activation function (Conv 1× 1). The single purple arrow (representing the last step in this network) denotes a 1×1
convolutional operation that generates the output of synthetic 2D Pittsburgh Compound-B slice. Each black dotted arrow denotes a copying
operation. Each red arrow denotes a 3×3 convolutional operation (stride= 2, with a ReLu as the activation function), and each green arrow
denotes a 3×3 deconvolutional operation (stride= 2, with a ReLu as the activation function). Additional details of themodel are included in the
supplementarymaterial

always unique. We performed this 10-fold cross-validation technique

for all three views: coronal, sagittal, and axial. For each view and fold,

individual FBP 2D slices (256 × 256) from the 81 patients were used

as the input, and the PIB 2D slices with respect to the same patients

were taken as output to train and validate the RIED-Netmodel. Among

the 2D slices obtained from81 patients, we used a 90:10 split for train-

ing and internal validation. For each fold, we trained the model for a

total of 40 epochs with a batch-size of 16 (determined by the comput-

ing resource) and the mean absolute error (MAE) as the loss function

optimizedby themodel.WeusedAdam43 as theoptimizerwith a learn-

ing rate of 0.002 and a decay rate of 0.0005. For the other parameters

we used default settings of theKeras platform. The validatedmodel for

that fold was then used to generate synthetic PIB SUVR images from

FBP image for the remaining nine patients serving as testing. Using the

10-fold CV procedure, a synthetic PIB SUVR image was generated for

each view and an average synthetic 3D PIB SUVR image was then gen-

erated combining the three views which was used as the main target

for performance evaluation.

To obtain a single model from the OASIS dataset and test its perfor-

mance on the independent GAAIN dataset to further evaluate the gen-

eralizability of our approach, we retrained the models using 80 out of

the 92 OASIS samples that had the largest field of view coverage and

applied the models to generate synthetic PIB SUVR images for sam-

ples within the independent GAAIN dataset. Similar to the experiment

with theOASIS dataset only, synthetic PIB SUVR images for theGAAIN

datasetwere generated for each viewand the average 3D image across

all three viewswas used as themain target for performance evaluation.

2.4 Statistical analysis

We assessed the performance of RIED-Net in harmonizing the PIB and

FBP images using two different metrics. To determine how well the

model harmonized global amyloidmeasures derived from the two trac-

ers, we used the Pearson’s correlation coefficients between the PIB-

derived global amyloid burden measure in CL units (CL_PIB) and the
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FBP-derived measure (CL_FBP) before and after applying the harmo-

nization model across participants. To determine the effectiveness of

the RIED-Net model at the local level, voxel-wise correlation between

PIB and FBP SUVR images were evaluated before and after apply-

ing the RIED-Net model to the FBP data. Steiger’s test was used to

test whether the agreement in global amyloid burden measures was

improved after applying the RIED-Net model and the paired two-

sample t test was used to determine whether there was an improve-

ment in voxel-wise spatial correlation after Fisher’s Z-transform of the

correlation coefficients. To examine the real-world impact of our pro-

posed harmonization technique, the mean and standard deviation of

global amyloid burden in CL scale were also calculated for the young

control subjects within the GAAIN dataset to evaluate the signal to

noise properties of the global amyloid burden measurements. In addi-

tion, amyloid positivity thresholds were estimated based on the 95%

specificity criterion and the highest amyloid burden in the young con-

trol group for PIB, FBP, and harmonized FBP data.

3 RESULTS

Figure 2 demonstrates MAE loss function convergence for models

trained on the three views with 10 folds generated on the OASIS

dataset across a total number of 40 epochs. It is known that when the

validation cohort loss function value approaches the one in the training

cohort, this indicates the model is not overfitting. Under these guide-

lines and empirical evaluation, we determined the number of epochs as

40. In addition, Figure 2 showed a consistent decrease in loss function

(to∼0.01)with fewer spikes and hence ourDLmodel is stable across all

the folds generated on the dataset.

Synthetic PIB SUVR images were visually more similar to real PIB

data for both the OASIS dataset which was used for training and cross

validation and the independent GAAIN dataset (Figure 3). The RIED-

Net model was able to suppress the white matter signal in FBP data

as well as non-brain tissue uptake (most obvious for Figure 3A and

D). Quantitatively, the global amyloid burden index was in greater

(P = .0006) agreement with the CL_PIB after application of the RIED-

Net model (r = 0.95) (Figure 4B) than before (r = 0.90) (Figure 4A) in

the cross-validation dataset (OASIS). Similar improvements (r=0.97 vs

r = 0.93, P = .0001) were also observed in the independent test-

ing dataset (GAAIN) (Figure 4C and D). Voxel-wise spatial correlation

improved from r = 0.89 before harmonization to r = 0.95 after for

the cross-validation dataset (OASIS) (P < .0001), and from r = 0.90–

0.95 with harmonization for the independent testing dataset (GAAIN)

(P < .0001). For the young control subjects in the GAAIN dataset, the

global amyloid burden measurements were 0.8 ± 4.5 CL based on PIB

imaging and 3.9 ± 7.4 CL based on FBP; after the RIED-Net model

was applied to the FBP data the same metric becomes 2.0 ± 3.5 CL

(Table 2). The 95% specificity thresholds for amyloid positivity were

8.2, 16.1, and 7.7 CL based on PIB, FBP, and harmonized FBP, respec-

tively, and the thresholds determined from young control max were

11.3, 19.9, and 8.5 CL, respectively, for the same sets of measurements

(Table 2).

TABLE 2 Global amyloid burdenmeasurements in centiloid scale
(CL) for young control (YC) subjects in GAAIN dataset, 95% specificity
thresholds for amyloid positivity and threshold from young control
max

CL_PIB CL_FBP CL_PIB_syn

Mean_YC 0.8 3.9 2.0

SD_YC 4.5 7.4 3.5

95% TH 8.2 16.1 7.7

YCMax 11.3 19.9 8.5

Abbreviation: GAAIN, Centiloid Project; PIB, PittsburghCompound-B; FBP,

florbetapir.

4 DISCUSSION

We reported for the first time the application of DL techniques to

harmonize amyloid PET images acquired using different tracers and

demonstrated that the RIED-Net was able to improve the agreement

in amyloid measures from two different tracers for both global indices

and voxel-wise similarities. Furthermore, we demonstrated that our

technique is generalizable to external imaging data and achieves favor-

able performance without additional tuning of the model, consider-

ing that the GAAIN dataset was from multiple imaging centers with

different image acquisition protocols and cohort characteristics than

the OASIS dataset. Our results suggest that the model is robust to

variabilities in imaging acquisition protocols and scanner differences

when standard scanner harmonization protocols44 are implemented.

The RIED-Net model is readily applicable to new FBP scans, provided

that the FBP scans are fully processed following the same procedure

described in our Methods section. Therefore, our proposed DL tech-

nique is a promising approach for the harmonization of PET imaging

data obtained from different tracers targeting the same underlying

pathophysiology.

Compared to DL models from the literature, RIED-Net has two

major advantages. First, existingmethods use patch-based approaches

to alleviate computational burden, but this sacrifices synthesis perfor-

mance at the voxel level. RIED-Net was designed focusing on voxel

mapping with its performance proven to be satisfactory using two

separate datasets for validation and testing in this study. The second

advantage is from the residual inception block which made RIED-Net

computational affordable, thus it has the potential to performPET har-

monization task in 3Dwhich is one ongoing effort. Recent studies45–47

have also proposed to use Generative Adversarial Networks (GANs)

for image-to-image translation and generating highly realistic images.

GAN models estimate complex non-linear relationships by learning

estimation of joint probability distribution of the paired images at the

whole image scale, but we contend the performance of GAN models

on voxel-to-voxel level translation may be questionable. In our current

implementation, a 2D RIED-net model was adopted to work with the

limited tracer comparison data that are currently available to train a

DL model which typically requires thousands of images. Operating in

2D mode, a moderate sized dataset like the OASIS cohort we used

in this study with 92 subjects provided more than 20 thousand slices
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F IGURE 2 Convergence ofMAE (Mean Absolute Error) loss function for models trained on all the three views

that can be used to train the model and evaluate the performance

using cross-validation strategies. However, a 2Dmodel cannot account

for the inherent spatial continuity between adjacent slices and thus

results in unwanted noise across slices which can be visually observed.

To address this limitation, we trained the RIED-net model based on

each of the three orthogonal views of the input 3D images and then

focused our performance evaluation on the average images from the

three views.When theRIED-netmodel fromeach single viewwas eval-

uated on its own, statistically significant improvements were observed

for both global amyloid burden index (P < .01) and voxel-wise spa-

tial correlation (P < .0001) for the cross-validation experiment. The

improvements remained highly significant when the single viewmodel

trained on the OASIS cohort was applied to the independent GAAIN

dataset for both metrics (P < .005). The improvements to the global

amyloid burden measure were comparable across the different views

and the average of three views, while voxel-wise agreement was sig-

nificantly better for the average image from three views than individ-

ual views in both the OASIS cohort (P < .0001) and the GAAIN cohort

(P< .0001).

In this work, SUVR images were first transformed into template

space before feeding to the RIED-net model and only slices within a

common field of view were used so that the model was less affected

by the variability of patient orientation and field of view coverage.

When native space imageswere used to train the RIED-netmodel, sim-

ilar performance was achieved within the cross-validation process but

failed to generalize to the independent testing data. This suggests spa-

tial normalization as a necessary preprocessing step to obtain favor-

able results, at least with the moderate amount of data available. Fur-

ther investigation iswarranted to determinewhether rigid transforma-

tion or a full nonlinear spatial normalization procedure would further

improve themodel.

The goal of a harmonization technique for amyloid PET imaging is

to allow interchangeable use of amyloid tracers in research and clin-

ical applications without the need to design and develop tracer spe-

cific interpretations of the images both qualitatively andquantitatively.

To demonstrate the effectiveness of our DL approach in achieving

this goal, we examined the amyloid positivity threshold determined

using a 95% specificity criterion based on the GAAIN dataset.Without
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F IGURE 3 Visual comparison of synthetic images generated using RIED-Net to real Pittsburgh Compound-B (PIB) data for theOASIS (Open
Access Series of Imaging Studies; panels A and B) and GAAIN (Centiloid Project; panels C andD) datasets used in our study. Panels A and C show
representative images from amyloid negative participants and panels B &D are examples from amyloid positive participants. Abbreviations: FBP,
florbetapir; SynPIB, synthetic PIB.

applying our RIED-Net model, the positivity threshold derived from

PIB imaging data was 8.2 CL while the threshold derived from FBP

data was 16.1 CL, reflecting the higher variability of the amyloid bur-

denmeasurement using FBPwithin brains with minimal amyloid depo-

sition. After the application of the RIED-Net model to generate syn-

thetic PIB images from FBP scans, the positivity threshold became 7.7

CL which is much closer to the PIB-based positivity threshold. There-

fore, our proposed DL approach can substantially improve the inter-

changeability of amyloid burden measures from PIB and FBP. It should

be noted that, in this study, we derived the amyloid positivity threshold

based on the 95% specificity criterion using the GAAIN dataset which

includes a subset of young adultswho are not expected to have amyloid

pathology in their brains. These cutoffs are different from the cutoffs

that were described in the previous studies where pathological assess-

ment was used as the gold standard. Future studies are warranted to

confirm the agreement in amyloid positivity cutoffs in pathologically

confirmed cohorts. Further investigation iswarranted to reach the goal

of a generalizable model that allows full interchangeable use of amy-

loid PET tracers for clinical interpretation, quantitative determination

of amyloid positivity, and longitudinal tracking of amyloid accumula-

tions. This canpotentially beachievedbyusing a larger trainingdataset,

investigative alternative model structures, and leveraging additional

imagingmodalities such asMR.

In summary, we demonstrated for the first time that a DL approach

can be used to harmonize amyloid PET imaging data from two differ-

ent tracers to provide highly interchangeable amyloid measurement.

This approachmay also become invaluable for addressing similar prob-

lems such as the harmonization of tau PET imaging data from different

tracers.
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F IGURE 4 Global amyloid burden index before (A and C) and after (B andD) application of RIED-Netmodel on theOASIS (Open Access Series
of Imaging Studies) dataset (A and B) and on the GAAIN (Centiloid Project) dataset (C andD). Improved agreement as shown by greater shared
variance and Pearson’s correlation was observed after using the RIED-Netmodel on both datasets (P< .001)
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